
Solutions for Today | Options for Tomorrow

Calibration of a Particle-In-Cell Simulation 
Model for Gravitational Settling Bed 
Application

2021 NETL Workshop on Multiphase Flow Science 

2021 NETL Workshop on Multiphase Flow Science
Aug. 3, 2021

Aytekin Gel, Ph.D.
Avinash Vaidheeswaran, Ph.D. 
Mary Ann Clarke, Ph.D.



This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United
States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any
of its employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Disclaimer

2



Authors and Contact Information

Aytekin Gel1,2, Avinash Vaidheeswaran1,3, Mary Ann Clarke1,3

1National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507, USA

2ALPEMI Consulting, L.L.C., 8205 S. Priest Drive #13951, Tempe, AZ 85284, USA

3NETL Support Contractor, 3610 Collins Ferry Road, Morgantown, WV 26507, USA

3



Outline

• Brief Overview of MFiX-PIC
• Representative Problems for the Calibration Study
• Brief Overview of Calibration Methods
• Simulation Campaigns to Construct Surrogate 

Models
• Assessment of Deterministic Calibration Results
• Concluding Remarks

4



Brief Overview of MFiX-PIC
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Concept:  When particles are of equal physical property, they can be grouped together as 
larger parcels. Multiple particle types can be managed as separate parcel distributions.

Instead of managing each particle with Newtonian physics, 
parcel motion is influenced by a collisional stress model.

Solids stress
A reduced computational load allows the simulations to proceed 
very rapidly. Lagrange tracking of parcels results in excellent visual 
graphics of statistically weighted particle motion.
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• Cases selected to cover a broad range of flow 
conditions
• Particle Settling: U/Umf < 1.0 (P0 ~ 1) (Simulation campaign)
• Bubbling Fluidized bed: U/Umf ~ 1 (P0 ~ 10)
• Circulating Fluidized bed: U/Umf >> 1.0 (P0 ~ 100)

• Summary of model parameters used:

Representative Problems for the Calibration Study

t1
Pressure 

linear scale 
factor

t2
Volume fraction 

exponential 
scale factor 

t3
Statistical 

weight

t4
Volume fraction 

at maximum 
packing

t5
Solid slip velocity 

factor

C1: Particle Settling [1,20] [2,5] [3,20] [0.35,0.5] [0.5,1.0]

C2: Fluidization [1,100] [2,5] [10,100] [0.4,0.5] [0.85,0.98]

C3: Circulating 
Fluidized Bed

[1,250] [2,5] [4] [0.4,0.5] [0.85,0.98]
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Parcel momentum equation

Hypothetical flow regime map*Parameters selected based on prior sensitivity study
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Problem setup
C1: Particle settling

t1 or (q1): 
Pressure 

linear scale 
factor

t2 or (q2): 
Vol. fraction 
exponential 
scale factor 

t3 or (q3): 
Statistical 

weight

t4 or (q4): 
Vol. fraction 
at maximum 

packing

t5 or (q5): 
Solid slip 

velocity factor

C1: Particle 
Settling

[0.48* , 20] [2 , 5] [2.96* , 20] [0.35* , 0.5] [0.5 , 1.0]

Control variables: CFD (PIC parameters)

Control variable: Initial solids concentration
Range: [0.05,0.25] 

x1:
Initial solids concentration

C1: Particle Settling [0.05,0.25]

Response variable: Location of filling shock (y2)
CFD results are compared with analytical solutions

𝒙 𝒕 = −𝒕
𝜺𝒔∗𝜺𝒈∗𝒖𝒓∗ − 𝜺𝒔𝟎𝜺𝒈𝟎𝒖𝒓𝟎

𝜺𝒔∗ − 𝜺𝒔𝟎

𝒖𝒓 =
𝒈∆𝝆𝒅𝒑𝟐

𝟏𝟖𝝁𝒈
𝜺𝒈𝟑.𝟔𝟓

Location of 
shock

Rel. velocity
(Stokes’ drag)

Analytical Solution:

* Initial targeted lower bound might be slightly different than actual samples generated as part of Latin Hypercube 
sampling
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Deterministic versus Statistical Calibration

Brief Overview of Calibration Methods

Two approaches:
• Deterministic Calibration:

• Framed as minimization problem that seeks 
one or more sets of parameter values that 
reduce the error between simulation (si(q)) 
and data yi, typically in a norm:

• Available in UQ software: DAKOTA (SNL), 
PSUADE (LLNL), OpenTURNS (Airbus+ONERA), 
Nodeworks (NETL) with some modifications 

• Statistical calibration (Bayesian): 
• Instead of standalone parameter values, it  

seeks a statistical characterization of 
parameters most consistent with the data.

• Available in UQ Software: PSUADE (LLNL), 
DAKOTA (SNL), OT, GPM/SA & SEPIA (LANL)

• Maximize agreement between 
simulation and experiment target by 
improving the characterization of 
model parameters, qi (e.g., P0, b) 
using available data.

• Also known as parameter estimation 
/identification, inverse problem 
modeling

• Calibration ≠ validation
Source: DAKOTA Software Training: Model Calibration (SAND2015-6813PE)



9

• Utilize the constructed surrogate model and the set of analytical solutions 
(used in lieu of experiments) to perform the deterministic calibration.

• Deterministic calibration problem can be reframed as a minimization 
problem, i. e., 

• find a set of theta values that minimizes the residuals for all experiment 
data points

• Utilized PSUADE and DAKOTA UQ toolkits to perform the optimization.
• Recently implemented the workflow in Nodeworks

Calibration Proposed Settings for Model Parameters

Deterministic Calibration Procedure

Analytical solution

Surrogate model evaluation for any 
given q1…q5 values
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(1) Identify which 
model parameters to 
be calibrated with the 

lower and upper 
bound values.

(2) Compile the tabular 
format dataset from 

observations or 
experiments, which will 

be used to guide the 
calibration.

(3) Design and execute 
simulation campaign based 

on statistical design of 
experiments.  

(6) Verify the proposed 
calibrated model parameter 

settings by performing 
samples of simulations and 
compare the discrepancy 

with respect to observations 
with the new settings.  

(5) Construct an adequate 
surrogate model.       

Perform the optimization for 
minimization of residuals to 

determine the calibrated 
parameter settings.  

(4) Post-process 
simulation campaign 

results and compile the 
tabulated input file 

containing samples and 
QoIs from simulations.

Workflow 

Deterministic Calibration Procedure

• Multiple step workflow followed for 
deterministic calibration procedure

• Design of the simulation campaign 
in Step (3) was carried out with 
Nodeworks, simulations were 
performed with MFiX-PIC on Joule 
2.0

• Step (5) was performed with 
PSUADE, DAKOTA and Nodeworks by 
providing the same tabulated file 
that contains simulation campaign 
input and responses.
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Construct Surrogate Model from Simulation Campaign (120 samples)

C1: Particle Settling Simulation Campaigns

Scatter matrix plot of the 
simulation campaign 
samples, which is used to 
construct a surrogate model.
Only the 5 model parameters 
are shown.

(a) Design of experiments matrix (first 42 out of 120 samples shown) (b) Scatter matrix plot of the simulation campaign input dataset
Optimal Latin Hypercube Sampling based Simulation Campaign 
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Available Analytical Solution Used for Deterministic Calibration

C1: Particle Settling Analytical Solution

To guide the calibration 
process, analytical 
solution was used in lieu 
of actual experiments. 

Three different scenarios
are employed by 
computing the analytical 
solution for 0.05 ≤ x1 ≤ 0.25 
range with different 
number of samples :
• 21 samples 
• 11 samples
• 5 samples
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Construct Surrogate Model from Simulation Campaign (120 samples)

C1: Particle Settling Simulation Campaigns

3D plot of the data-fitted surrogate model
*t1,t2,t3 set at 
nominal values

Sensitivity Analysis using Sobol’ Indices

t1: Pressure linear scale factor
t2: Exponential factor
t3: Statistical weight
t4: Void fraction at packing
t5: Solids slip velocity factor 

120 sample-based simulation 
campaign results.
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Illustration of Nodeworks Implementation Workflow

Minimization performed by the General Optimizer node 
for: 

New node used to import experimental dataset and perform 
residual calculations required as part of the optimization (i.e., 
minimization of residuals) 

Optimal set of parameters identified 
that minimize the residual 
[9.55, 3.44, 9.41, 0.4, 0.69]

Deterministic Calibration Procedure

For more information on Nodeworks please visit: 
https://mfix.netl.doe.gov/products/nodeworks/

or please scan the QR code : 

https://mfix.netl.doe.gov/products/nodeworks/
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Comparison of Histograms for % Rel. Error Before & After Bug Fix

C1: Verification Simulation Campaigns (n=119) 

MFIX-PIC 
model 
Parameter

Default 
Settings

V&V 
Manual 
Settings

(q1): 
Pressure 
linear scale 
factor

100 10

(q2):    Vol. 
fraction 
exponential 
scale factor 

3.0 3.0

Theta3 (q3):  
Statistical 
weight

5.0 5.0

Theta4 (q4): 
Vol. fraction 
at maxi-
mum 
packing

0.42 0.4

Theta5 (q5): 
Solid slip 
velocity 
factor

1.0 0.5
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Deterministic calibration with additional simulation campaigns
(using 120 samples with different bounds)

Bounds of the parameter space for Model Parameters

C1: Proposed Calibrated Settings

Simulation campaign with New 
Bounds [NB] (120 samples)

C1: 
Particle Settling

t1 or (q1): 
Pressure 

linear scale 
factor

t2 or (q2): 
Vol. fraction 
exponential 
scale factor 

t3 or (q3): 
Statistical 

weight

t4 or (q4): 
Vol. fraction 
at maximum 

packing

t5 or (q5): 
Solid slip 

velocity factor

Original Bounds 
[OB]

[0.48 , 20] [2 , 5] [2.96 , 20] [0.35 , 0.5] [0.5 , 1.0]

New Bounds [NB] [0.48 , 20] [2 , 5] [2.94 , 15] [0.38 , 0.43] [0.5 , 0.9]

Control variables: CFD (PIC parameters)
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MFIX-PIC 
model 
Parameters

Default 
Settings

V&V Manual 
Settings

PS Exp_n11 
[NB]

DK Exp_n21 
[NB]

PS Exp_n21 
[NB]

DK Exp_n21 
[OB]

Theta1 (q1): 
Pressure linear 
scale factor

100 10 2.71 16.1 3.08 4.2

Theta2 (q2):    
Vol. fraction 
exponential 
scale factor 

3.0 3.0 3.74 2.04 3.71 2.1

Theta3 (q3):  
Statistical 
weight

5.0 5.0 8.86 10.51 8.93 8.49

Theta4 (q4): Vol. 
fraction at 
maxi-mum 
packing

0.42 0.4 0.4 0.4 0.4 0.38

Theta5 (q5): 
Solid slip 
velocity factor

1.0 0.5 0.7 0.53 0.69 0.66

Avg. % Rel. Err. -6.61% -2.25% -5.9% -2.63% -6.17% -2.53%

Min % Rel. Err. -19.95% -12.53% -21.7% -12.63% -18.66% -8.81%

Max % Rel. Err. 37.82% 12.16% 8.28% 7.09% 9.66% 5.23%

C1: Proposed Calibrated Settings

Column Legend:
Default Settings: Settings in MFiX-PIC

V&V Manual Settings: Settings determined 
by trial-error.

PS Exp_n11 [NB]: Proposed calibrated model 
parameter settings obtained with PSUADE
using a surrogate model constructed from 
the simulation campaign with new bounds 
and 11 samples of analytical solution to 
guide calibration

PS Exp_n21 [NB]: Same as above except 21 
samples of analytical solution employed.

DK Exp_n21 [NB]: Proposed calibrated 
model parameter settings obtained with 
DAKOTA using a surrogate model 
constructed from the simulation campaign 
with new bounds and 11 samples of 
analytical solution to guide calibration

DK Exp_n21 [OB]: Same as above except 
surrogate model constructed from the 
simulation campaign with original bounds 
used.

Note: % Rel. Err. Is the % Relative Error calculated by (Surrogate model evaluation – Analytical Soln.)/ Analytical Soln.
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Comparison of PSUADE and DAKOTA (119 unseen samples for x1)

C1: Error Assessment of the Proposed Calibrated Settings

PSUADE with 11 analytical samples PSUADE with 21 analytical samplesDAKOTA with 21 analytical samples DAKOTA with 21 analytical samples

Note: NB: surrogate model constructed from a simulation campaign with new bounds for some of the parameters, OB: simulation campaign with original bounds 
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Visualization of Proposed Settings and Simulation Campaign

C1: Proposed Calibration Settings

Proposed Calibrated Settings

DK Exp_n21 [NB]

Default Settings

V&V Manual Settings

DK Exp_n21 [OB]

PS Exp_n21 [NB]

PS Exp_n11 [NB]

t1:P_0 = 100; 
t5:VelfacCoeff = 1.0

Proposed Calibrated Settings (excl. t1=100, t5=1 for Default Settings)
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Concluding Remarks

• MFiX-PIC offers substantial savings in time-to-solution, but the trade-off is accuracy.

• Objective was to employ various calibration techniques to assess the most uncertain model parameters 
specific to Parcel-in-Cell methodology and observe how they vary across different flow regimes.

• Adopted a systematic calibration procedure to identify optimal model parameter settings to minimize 
the discrepancy between MFiX-PIC and available experimental/analytical dataset. Started with 
Deterministic calibration as it is cheaper than Bayesian Calibration.

• Test the performance of calibrated model parameters rigorously. Also assessed the effect of varying 
sample size in the experiments (analytical solution).

• Explored different UQ toolkits such as PSUADE and DAKOTA and implemented the deterministic 
calibration capability within Nodeworks. 

• When compared with the default settings, demonstrated significant accuracy improvement for Particle 
Settling case with deterministic calibration 
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Future Work

• Perform deterministic calibration and statistical calibration for all selected cases and compare the 
outcomes from both calibration approaches

Compare 
deterministic 
calibration results 
with the statistical 
calibration PDFs

Case 1: Particle Settling (Preliminary Bayesian Calibration Results)
Case 3: Circulating Fluidized Bed

Case 2: Fluidization
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Future Work
• Compare proposed calibrated model parameter settings for different flow regimes and provide best practices 

guidance to MFiX-PIC users on how to set PIC specific parameters based targeted application. For example, for q3 :

Cases / 
Flow Regimes

t1 or (q1): 
Pressure linear 

scale factor

t2 or (q2): 
Vol. fraction 
exponential 
scale factor 

t3 or (q3): 
Statistical weight

t4 or (q4): 
Vol. fraction at 

maximum 
packing

t5 or (q5): 
Solid slip velocity 

factor

C1: 
Particle 
Settling

…. …. …. ….

C2: 
Fluidization …. …. …. ….

C3: 
Circulating
Fluidized Bed

…. …. …. ….
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Additional Slides
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Illustration of Nodeworks Implementation Workflow

Deterministic Calibration Procedure



27

Illustration of Nodeworks Implementation Workflow

Deterministic Calibration Procedure
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Illustration of Nodeworks Implementation Workflow

Deterministic Calibration Procedure
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Illustration of Nodeworks Implementation Workflow

Deterministic Calibration Procedure


